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This study examined the types of mathematical connections established by four secondary school students 
while constructing concept maps on transformations of the parabola. The use of concepts maps revealed 
students’ understandings—including some misconceptions—of transformations of the parabola and 
confirmed the usefulness of a model for categorising types of connections. 

For many, mathematics is a coherent and connected discipline characterised by a network of 
ideas. Some students, however, view it as a collection of separate entities (García-García & Dolores-
Flores, 2018). Establishing connections between seemingly distinct mathematical ideas is central to 
conceptual understanding and is broadly recommended in research literature (Choy & Toh, 2021) 
for its ability, among other reasons, to integrate intra- and extra-mathematical knowledge 
(Rodríguez-Nieto et al., 2020). Also, we “understand something if we see how it is related or 
connected to other things we know” (Charles & Carmel, 2005, p. 10). For students to understand a 
new mathematical concept or acquire a new skill, they must connect their pre-existing 
understandings to the new concept or skills (Anthony & Walshaw, 2009). To assess students’ 
understanding of a mathematical concept, an examination of how students connect the concept with 
other concepts can be undertaken (Barmby et al., 2009). 

Research evidence (e.g., Yanik, 2014) shows that students struggle with the idea of 
transformations—including translations, reflections, rotations, and dilations—and hold ill-formed 
conceptual understandings of transformations (Hollebrands, 2004). Existing work on 
transformations of the parabola provides a basis for students’ understanding of transformations of 
hyperbolic, exponential, and trigonometrical functions. In transformations of the parabola, many 
concepts can be represented both geometrically and algebraically, so it is important that students 
have the capacity to traverse between the two representations. The need to explore students’ 
conceptual understandings of transformations of the parabola, therefore, has become critical. The 
research reported in this paper sought to answer the question: What types of mathematical 
connections are evident in concept maps drawn by secondary school students among concepts 
associated with transformations of the parabola and other mathematical concepts? 

Mathematical Connections 
There are two ways, among possible others, through which a deep understanding of a concept 

may be shown: (i) the connections a student makes between a concept and other mathematical ideas, 
and (ii) the student’s various representations of the concept and the reasoning behind the connections 
made (Barmby et al., 2009). Borrowing from the definitions of mathematical connections available 
in the literature (Businskas, 2008; Eli et al., 2013; Garcia-Garcia & Dolores-Flores, 2018), in this 
paper, mathematical connections are considered to be the relationships a student constructs among 
mathematical ideas, representations, procedures, symbols, properties, definitions, and theorems. 
According to Businskas (2008), there are several ways of viewing a mathematical connection. These 
include: a relationship between ideas or processes; a process of making or recognizing links between 
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mathematical ideas; associations between two or more mathematical ideas; and, finally, a causal or 
logical interdependence between mathematical entities. There has been extensive research on 
mathematical connections established by practicing (Businskas, 2008; Eli, Mohr‐Schroeder, & Lee, 
2013; Hatisaru, 2022; Mhlolo, 2012) and pre-service teachers (Evitts, 2004). Less attention has been 
given to mathematical connections established by students. 

In her study, Businskas (2008) gave definitions for five types of mathematical connections 
identified by secondary teachers: different representations, implications, part-whole relationships, 
procedures, and instruction-oriented connections. Different representations are either alternative or 
equivalent representations of a concept. Part-whole relationships are such that one concept is 
contained in or is a component of the other. Implications are connections that highlight that A implies 
B. Procedures associate a process, or method, for working with a concept. Instruction-oriented 
connections indicate that A is a concept or skill necessary for understanding B, and these are 
associated particularly with teaching. 

García-García and Dolores-Flores (2018) explored the mathematical connections established by 
high school students while solving calculus problems, using task-based interviews for data 
collection. García-García and Dolores-Flores' (2018) model consisted of seven types of 
mathematical connections, of which four were consistent with the model of Businskas (2008). As 
they worked with students, the instruction-oriented connections were not evident in their study. They 
added feature connections (also found earlier by Eli et al. (2011) and later by Hatisaru (2022)), 
evident when properties of a mathematical concept are presented or described in terms of what 
associates or differentiates it from other mathematical concepts, and reversibility and meaning. A 
reversibility connection is evident when a person is able to establish a two-way relationship between 
concepts. The meaning connection is manifested when the properties of a concept are linked to its 
rules, formulae, or processes including definitions and contexts. 

In this study, an amalgamation of the model by Businskas (2008) and by García-García and 
Dolores-Flores (2018) was conjectured to be applicable for analysing mathematical connections 
identified by secondary school students. This model consists of connections that incorporate 
meaning, different representations, part-whole relationships, procedures, features, and reversibility. 
Further elaborations of these type of connections are presented in Table 1, which provides an outline 
of the types of connections related to the specific topic of transformations of the parabola. 
Table 1 

Types of Mathematical Connections Associated with Transformations of the Parabola 

Type of connections Examples 

Meaning connections Meanings or interpretations associated with concepts. 
Analogies for properties: when a familiar concept is linked to an abstract intended 
domain such as:  
(i) reflection over the x-axis as a “flip”;  
(ii) an upright parabolic shape as a “smile” or a “U shape”; or  
(iii) a translation of 5 units to the left as a “slide” or “shift” of 5 units 

Different 
representations 
connections 

Equivalent representations: (i) y-axis and 𝑥 = 0 line; (ii) 𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐 and  
𝑦 = 𝑎(𝑥 − ℎ)! + 𝑘 
Alternate representations: e.g., A parabolic U shape in the Cartesian plane with key 
points labelled as an alternate representation of the function 𝑦 = 𝑥! − 3 

Part-whole 
relationship 
connections 

For instance:  
(i) y- and x-intercepts and turning point are part of the parabola;  
(ii) a parabola has an axis of symmetry hence the axis of symmetry becomes part of 
the parabola 
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Type of connections Examples 

Procedure connections For instance, 𝑦 = 𝑎(𝑥 − ℎ)! + 𝑘 
a: gives the shape and gradient of the parabola: (i) reflection of the parabola over the 
x-axis (when a < 0); (ii) if |a| < 1 the parabola is wider and less steep than when  
a = 1; (iii) if |a| >1 the parabola is narrower and steeper than when a = 1 
h: horizontal translation: to the right (when h > 0) or to the left (when h < 0), h Î ℝ 
k: vertical translation: upward (when k > 0) or downward (when k < 0), k Î ℝ 

Feature connections Some or all the properties may be exhibited: The basic parabola has two roots, it is 
symmetrical about the y-axis and has a domain of x Î ℝ, (-∞, +∞) and a range of  
y Î ℝ, [0, +∞) or y ≥ 0 

Reversibility 
connections 

Forward and backward relationship. 
For instance: a parabola is given by 𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐 and the equation of the 
parabola can be obtained using information on the parabolic graph. 

Methodology 
This study is part of the first author’s PhD investigation conducted in a year 10 ‘Mathematics 

General’ class in an Australian secondary school. The mathematical content for this class enables 
above average students to continue on to a pre-tertiary mathematics course in year 11 and includes 
study of transformations of parabolas. 

Concept maps are known to provide visual representations of dynamic structures of 
understanding within the human mind (Mls, 2004). A concept map is a visual technique reflecting 
the key perceptions of an individual regarding relationships between and among ideas (Wheeldon 
& Faubert, 2009). Concept maps were utilised as the data collection tool for this study in order to 
make visible each student’s internally constructed connections associated with the transformations 
of the parabola. 

Participants 
Twelve sixteen-year-old students were the informants of the study. For the purpose of examining 

the types of connections associated with transformations of the parabola, the concept maps of four 
participants were purposefully selected for closer examination in this paper because three of the 
maps had additional elaborations and one, without additional elaborations, included many arrows 
indicating an extensive set of connections. The four participants were given pseudonyms: Enoch, 
Irvine, Nathan, and Jimmy. They had all been at the study school since year 7. Nathan and Jimmy 
were attending extension classes during Mathematics extended sessions. They intended pursuing a 
mathematics-oriented course at tertiary level. Enoch and Irvine did not intend to take up pre-tertiary 
mathematics courses. 

Data Collection 
Students received ten lessons of instruction on transformations of the parabola. Following this 

unit of work, participants were provided with concept cards for constructing their concept maps. 
The concept cards included concepts that were either related or unrelated to transformations of the 
parabola. There were also some blank cards. Participants were told to imagine they were writing a 
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mathematics textbook on transformations of the parabola. They were given prompting questions to 
assist them with coming up with ideas they might wanted to include such as: 

• How would you define the word “transformation” in mathematics? 
• What are the different forms of transformation you know? 
• Which topics are linked to transformations? 
• What words, symbols, and representations are associated with transformations? 

Participants could add their own concepts or information they felt had been omitted using the blank 
cards. Participants were encouraged to select and link their concepts and ideas with arrows and put 
labels on arrows to describe how the concepts were related. Some of the concept cards provided to 
the participants are seen in Figures 1 to 4. 

Guided by the types of connections identified in Table 1, data were analysed to reveal the types 
of mathematical connections established by participants while they were constructing concept maps 
on transformations of the parabola. 

Findings 
All four students made connections among concepts in their concept maps. Participants used 

arrows or lines to connect related concepts and ideas; however, some of the participants provided 
clustered related concepts without using connecting arrows. In some instances, participants provided 
elaborations on the arrows to describe how they thought the ideas are related. Figure 1 illustrates 
how Enoch used arrows and elaborations to describe the connection between the parabola and each 
of the algebraic equations. In Figure 2, Nathan’s concept map provides a fine example of clustered 
concepts. These were concepts he identified as connected by putting them in close proximity of each 
other without using arrows to connect them. 

Meaning Connections 
To some of the participants, “transformations of the parabola” meant movement of the parabola, 

changing its position on the Cartesian plane. This notion is captured, for instance, when Nathan puts 
“position” between “flip” and “dilation” and uses the phrases “stretches along y or x axis” to 
describe a dilation which is a form of transformation (see Figure 2). In the same concept map Nathan 
used certain phrases in his elaborations on horizontal shift: “𝑦 = (𝑥 − ℎ)',	shifts h to the right” and 
“𝑦 = (𝑥 + ℎ)',	shifts h to the left” (see Figure 2). Jimmy had a direct arrow from transformation to 
position then connected it with slide (see Figure 4), thus cementing the idea of transformation being 
perceived as movement. The meaning of translation as a form of transformation to all participants 
was either a vertical or a horizontal shift. This is evident in, for example, Irvine’s concept map where 
he had arrows originating from translation to vertical shift and another to horizontal shift (see Figure 
3). The meaning connection was also established as some participants clustered alternative words or 
phrases around a concept. For instance, vertical shift and slide were both linked to translation which 
is a form of transformation that can be described by these two terms (see Figure 2). 
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Figure 1. Enoch’s concept map. 

 
Figure 2. Nathan’s concept map. 

Different Representations Connections 
Some participants established different representations connections (Businskas, 2008). In Figure 

3, Irvine used a graphical representation to illustrate a translation of the quadratic function 𝑦 = 𝑥', 
which was presented in the form of a solid line parabola and the resulting images after translation 
as a dotted line parabola for the vertical and the horizontal shifts. Enoch connected the equations 
𝑦 = 𝑎𝑥' + 𝑏𝑥 + 𝑐 and	𝑦 = 𝑎(𝑥 + ℎ)' + 𝑘 as alternate representations of a parabola. He also used 
the parameter -a as an equivalent of a reflection, and +k up and -k down to represent a vertical shift 
(Figure 1). Nathan identified “𝑦 = (𝑥 − ℎ)',” as an alternate representation for the horizontal 
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graphical translation of the parabola (Figure 2). In Figure 4, Jimmy identified y = x and y = mx + c 
as alternate representations of a line, although he also associated 𝑦 = 𝑎𝑥' + 𝑏𝑥 + 𝑐 as a line as well. 

 

Figure 3. Irvine’s concept map. 

 

Figure 4. Jimmy’s concept map. 

Part-Whole Relationship Connections 
Another connection type that surfaced was the part-whole relationship. This connection type 

was also found in Hatisaru (2022). In Figure 3, Irvine linked x- and y-axes to graphing making them 
part of the graphing process. In the same concept map, “parabola” was linked to “domain” meaning 
that it is part of the parabola. Jimmy connected “scale factor” to “enlarge” and “reduce” meaning 
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that scale factor is a part of each one of them (Figure 4). Jimmy also connected “symmetry” to the 
parabola since the parabola is a symmetrical shape. 

Procedure Connections 
Procedural connections were evident in some participants’ elaborations. For instance, Nathan 

gave the description of a flip as follows: “-x flips it on the turning point horizontally” (see Figure 2), 
suggesting that the shape (parabola) is reflected over the x-axis, implying that Nathan knew that the 
negative sign represents a reflection over the x-axis. Another emerging idea was that transformation 
influences the position of an object. This was evidenced by the connection made between 
transformation and position in Figure 2. This additional information: “position can change 
depending on equation,” showed that Nathan had developed an understanding that different 
parameters in an equation influence the outcome; thus, parameters in an equation determine 
processes required to be undertaken. Enoch connected transformation to dilation. He added the 
elaborations that “a < 0 wider” and “a > 0 narrower”, describing the process if one had to transform 
a shape by dilating it (see Figure 1, top right of concept map). 

Feature Connections 
Some of the participants associated transformations of the parabola with algebraic equations of 

quadratic functions. In Figure 2, Nathan associated the equation 𝑦 = 𝑎𝑥' + 𝑏𝑥 + 𝑐 with “parabola” 
by having the concept cards adjacent to each other and linked—with an arrow—“transformation” 
with the equation 𝑦 = 𝑎(𝑥 + 	ℎ)' + 𝑘, where he highlighted the role of h and k in determining the 
turning point, and thus the translation of the basic parabola y = x2. He also connected 
“transformation” to the 𝑦 = 𝑎𝑥' + 𝑏𝑥 + 𝑐 equation, although it was not clear how he thought 
transformation is associated with that equation. Irvine made connections between the parabola and 
its various forms of representation and the general form of a straight line (see Figure 3). These 
connections reveal that, besides being able to identify and describe the transformation, Irvine had 
the ability to navigate between the algebraic and geometric domains utilising the feature connection. 

Reversibility Connections 
The reversibility connection from García-García and Dolores-Flores (2018) was only evident in 

one concept map and on one occasion. Bi-directional arrows were drawn to connect transformation 
to some of its forms. For example: graphing « parabola as seen in Irvine’s map in Figure 3 
indicates that the relationship between graphing and parabola is reversible. This suggests that Irvine 
understood that one could use given information to graph a parabola. At the same time, a person 
could extract information from the graphical form of a parabola. 

Discussion and Conclusions 
The types of connections established by participating students were consistent with those from 

the models of Businskas (2008) and García-García and Dolores-Flores (2018), with the exceptions 
of the instruction-oriented and implication connections. This may be attributed to the differences in 
the sample type as well as the data collection techniques. It was not expected to identify the 
instruction-oriented connection in the students’ works. Implication connections and procedural 
connections were difficult to identify in the absence of detailed elaborations. 

The students exhibited types of transformations using alternative wording and flexibility in the 
interpretation of algebraic transformation equations. Nevertheless, there were gaps in connecting 
concepts to their formal definitions. For example, the connection between “flip” and its formal name 
(reflection) was not evident in students’ work. Further elaborations revealed some misconceptions 
held by the students. This was perhaps best evident in Nathan’s response stating that “range is 
max/min value in the y axis” (Figure 2). It was also observed that participants made some ambiguous 
connections in their concept maps. For instance, in Figure 4, Jimmy did not provide descriptions of 
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how the linked concepts were related. In other words, the concept map did not include enough 
information for some of the connections he might have established. Clearly much detailed 
information—such as from interviews—might be needed to gain better insights into the connections 
that students make. 

These findings indicate that, as a data collecting tool, the concept map does not capture all the 
types of mathematical connections established by a student to reflect the full extent of their 
understanding of a learnt concept. Considering the emerging issues in this study, it is proposed that 
for most of the established connections to be captured, the concept maps could be accompanied by 
elaborations, and interviews, which would provide the participant with an opportunity to reveal some 
of the missing connections through their explanations and descriptions. 

With the emerging issues mentioned above in mind, findings from this study can provide 
teachers with insight into what students regard as connections between and among concepts, and 
plausibly can assist in identifying misconceptions and gaps in students’ conceptual understandings. 
They can also trigger teachers to reflect on their personal understandings of concepts creating 
opportunities for helping students develop well-formed conceptual understandings. Finally, 
education practitioners will be enlightened on how the formal concept definitions may be interpreted 
by students in personal ways. 
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